

 Navigation

 	
 index

 	exrm stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/exrm/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/exrm/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	exrm stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Common Issues.html

 Navigation

 		
 index

 		exrm stable documentation »

Common Issues

Problems often encountered by new users

I’m starting this list to begin collating the various caveats around
building releases. As soon as I feel like I have a firm grasp of all the
edge cases, I’ll formalize this in a better format perhaps as a
“Preparing for Release” document.

Dependency issues

Ensure all dependencies for your application are defined in either the
:applications or :included_applications block of your mix.exs file. This is how the build
process knows that those dependencies need to be bundled in to the
release. This includes dependencies of your dependencies, if they were
not properly configured. For instance, if you depend on mongoex, and
mongoex depends on erlang-mongodb, but mongoex doesn’t have erlang-mongodb
in it’s applications list, your app will fail in it’s release form,
because erlang-mongodb won’t be loaded.

If you are running into issues with your dependencies missing their
dependencies, it’s likely that the author did not put the dependencies in
the :application block of their mix.exs. You may have to fork, or
issue a pull request in order to resolve this issue. Alternatively, if
you know what the dependency is, you can put it in your own mix.exs, and
the release process will ensure that it is loaded with everything else.

Configuration not working as expected

Due to the way config.exs is converted to the sys.config file used by
Erlang releases, it is important to make sure all of your config values are
namespaced by application, i.e. config :myapp, foo: bar instead of config foo: bar,
and access your config via Application.get_env(:myapp, :foo). If you do not
do this, you will likely run into issues at runtime complaining that you are attempting
to access configuration for an application that is not loaded.

Packaging fails with errors related to erl_tar

If your project has files or modules names which exceed the file name length limit of erl_tar,
you will see an error like the following:

Building release with MIX_ENV=dev.
{{case_clause,
 {'EXIT',
 {function_clause,
 [{filename,join,[[]],[{file,"filename.erl"},{line,393}]},
 {erl_tar,split_filename,4,[{file,"erl_tar.erl"},{line,471}]},
 {erl_tar,create_header,3,[{file,"erl_tar.erl"},{line,400}]},
 {erl_tar,add1,4,[{file,"erl_tar.erl"},{line,323}]},
 {systools_make,add_to_tar,3,
 [{file,"systools_make.erl"},{line,1879}]},
 {lists,foreach,2,[{file,"lists.erl"},{line,1337}]},
 {systools_make,'-add_applications/5-fun-0-',6,
 [{file,"systools_make.erl"},{line,1569}]},
 {lists,foldl,3,[{file,"lists.erl"},{line,1262}]}]}}},
 [{systools_make,'-add_applications/5-fun-0-',6,
 [{file,"systools_make.erl"},{line,1569}]},
 {lists,foldl,3,[{file,"lists.erl"},{line,1262}]},
 {systools_make,add_applications,5,[{file,"systools_make.erl"},{line,1568}]},
 {systools_make,mk_tar,6,[{file,"systools_make.erl"},{line,1562}]},
 {systools_make,mk_tar,5,[{file,"systools_make.erl"},{line,1538}]},
 {systools_make,make_tar,2,[{file,"systools_make.erl"},{line,336}]},
 {rlx_prv_archive,make_tar,3,[{file,"src/rlx_prv_archive.erl"},{line,83}]},
 {relx,run_provider,2,[{file,"src/relx.erl"},{line,308}]}]}
==> ERROR: "Failed to build release. Please fix any errors and try again."

Release not starting correctly due to Joken version < 1.2.0

Joken < 1.2.0 causes a deadlock during application load, this affects start, console
and other commands.

Release not starting on Vagrant’s /vagrant mountpoint

When running in Vagrant with source and release dirs under the /vagrant directory, you might eed to set RELEASE_MUTABLE_DIR envar to a local path that is not under /vagrant

Release not starting for other reasons - diagnosis

exrm 1.0.4 and later - set ERL_OPTS="-init_debug" envvar when running your app.
You can tweak the myapp.sh script found inside the versioned directory.

For older versions, edit the startup script (rel/myapp/releases/1.0.0/myapp.sh) and edit the ERL_OPTS line to say ERL_OPTS="-init_debug".

Others

If you run into problems, please create an issue, and I’ll address ASAP.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

Upgrades and Downgrades.html

 Navigation

 		
 index

 		exrm stable documentation »

Upgrades/Downgrades

How to perform hot upgrades and downgrades!

Note: This documentation assumes you’ve done an initial deployment to /tmp per the Deployment docs. I would suggest starting there just to make sure you understand the prerequisites.

Important: In order to build upgradable releases, you need to have the previous release available in rel. Without it, the appup script can not be generated.
There are various approaches to storing the contents of rel (git, use a single build server, S3, etc.), but the important part is that you pick one.
When you are about to build a new release, make sure the previous release is available to the build (under rel), and you’ll be good to go!

So you’ve made some changes to your app, and you want to generate a new release and perform a hot upgrade. I’m here to tell you that this is going to be a breeze, so I hope you’re ready (I’m using my test app as an example here again):

		mix release

		mkdir -p /tmp/test/releases/0.0.2

		cp rel/test/releases/0.0.2/test.tar.gz /tmp/test/releases/0.0.2/

		cd /tmp/test

		bin/test upgrade "0.0.2"

Annnnd we’re done. Your app was upgraded in place with no downtime, and is now running your modified code. You can use bin/test remote_console to connect and test to be sure your changes worked as expected.

You can also provide your own .appup file, by writing one and placing it in
rel/<app>.appup. This location is checked before generating a new
release, and will be used instead of autogenerating an appup file for
you. If you don’t know what an appup file is, it is effectively the file which describes how the upgrade will be performed. To learn more about what goes in this file and how appups work, please consult the Erlang documentation for appups, which is located here [http://www.erlang.org/doc/design_principles/appup_cookbook.html].

Downgrading Releases

This is even easier! Using the example from before:

		cd /tmp/test

		bin/test downgrade "0.0.1"

All done!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

Getting Started.html

 Navigation

 		
 index

 		exrm stable documentation »

Getting Started

How to get up and running with releases

This project’s goal is to make releases with Elixir projects a breeze. It is composed of a mix task, and build files required to successfully take your Elixir project and perform a release build, and a simplified configuration mechanism [https://github.com/bitwalker/conform] which integrates with your current configuration and makes it easy for your operations group to configure the release once deployed. All you have to do to get started is the following:

Start by adding exrm as a dependency to your project:

defp deps do
 [{:exrm, "~> 0.18.1"}]
end

Usage

You can build a release with the release task:

$ mix release

This task constructs the complete release for you. The output is sent to rel/<project>. To see what flags you can pass to this task, use mix help release.

You can start a console connected to the release build of your application with:

$ rel/<project>/bin/<project> console

Testing a release during development

Rather than having to build a release, deploy, then test, you can actually test your release during development by using mix release --dev.

This symlinks your application’s code into the release, allowing you to make code changes, then recompile and restart your release to see the changes. Being able to rapidly test and tweak your release like this goes a long way to making the release process less tedious!

Cleanup

You can clean up release artifacts produced by exrm with:

$ mix release.clean

This will clean up any temporary artifacts related to the current version, and allow you to effectively start a release build from scratch.

By passing the --implode flag, you can further extend the clean up to all release related artifacts, effectively resetting yourself to a pre-exrm state. This should be done carefully, as anything related to releases will be removed!

You can pass the --no-confirm flag in addition to --implode if you want to bypass exrm’s warning about removing all artifacts (this is primarily for automated tasks, but might come in useful during testing scenarios)

IMPORTANT

It is currently not supported to perform hot upgrades/downgrades from the rel directory. This is because the upgrade/downgrade process deletes files from the release when it is installed, which will cause issues when you are attempting to build a release of the next version of your app. It is important that you do actual deployments of your app outside of the build directory!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/plus.png

examples.html

 Navigation

 		
 index

 		exrm stable documentation »

Examples

Example applications for your reference

You can find the source code for an example application here [https://github.com/bitwalker/exrm-test], and an example umbrella application here [https://github.com/bitwalker/exrm-umbrella-test]. Everything mentioned here should work out of the box with those projects. If it does not, please file a bug!

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

Release Configuration.html

 Navigation

 		
 index

 		exrm stable documentation »

Release Configuration

How to configure your release

There are two forms of configuration I will deal with here. One is
configuration for the release process itself, the latter is handling
application configuration for your release. The following custom release
configuration is supported:

		rel/sys.config - This is the configuration file the release will use in production. I would use config/config.exs or config/myapp.conf (if using conform) instead of this, but it’s there if you want it.

		rel/vm.args - This file contains line-separated arguments that the Erlang VM will use when booting up. Provide your own here and it will be used instead of the default one. Make sure you provide values for sname and cookie though, or you won’t be able to connect to your release!

		rel/relx.config - This file is used to provide configuration to exrm’s underyling relx dependency. See the documentation at relx’s GitHub page [https://github.com/erlware/relx] for more information on what you can provide here. The default one should cover 99% of cases, but if you need to tweak values, you can provide your own relx configuration, and setting the config values you care about. You do not need to provide the entire configuration, as your customizations will be merged with the defaults exrm uses.

Elixir has support for providing configuration using Elixir terms in a
config/config.exs file. While this is perfectly usable, it’s not very
simple for your operations group to work with, and generally contains no
useful documentation on what each setting is for or what they do. To
help make configuration much more easy and maintainable, exrm bundles a
dependency called conform [https://github.com/bitwalker/conform]. It is optional to use, but is there if you desire to use it.

Using Conform with Exrm

Conform relies primarily on two files: a <project>.schema.exs file, and
a <project>.conf file. The .conf file is where you will configure your
app, and the .schema.exs file is where you define what configuration is
available in the .conf, and how it is translated to the final
sys.config that your release loads up at runtime.

Conform itself has the best documentation on how to work with these files,
and to see an example app which makes use of this, check out the
exrm-test project [https://github.com/bitwalker/exrm-test].

Here’s a quick rundown on how it works. You probably already have a config.exs file, and if
you don’t that’s fine, it’s not required. If you do have one already,
you can compile your project and run mix conform.new to generate the
conform schema from your current configuration. If you don’t have one,
check out the conform README on how to create one. Once you have the
schema file in your config directory, you can work off the
definitions generated from your current config, and/or start adding
definitions for config settings you wish to add.

Once your schema is all set, you can generate the default .conf file for
your app using mix conform.configure. This will output a .conf file to
config/yourapp.conf. This will be bundled with your release, and
located in $DEPLOY_DIR/releases/$RELEASE_VER/myapp.conf per default
(also it could be moved, using RELEASE_CONFIG_FILE or RELEASE_CONFIG_DIR environment variables).
Your ops group can then do all their configuration in production via that file.

If you are wondering how that .conf file is usable by the VM, it’s very
simple. When you run <deploy dir>/bin/<project> start, or any other command which boots
your app, a conform escript is run which translates the .conf via the
schema (also bundled with the release) to Elixir terms, that is then
merged over the top of the sys.config which is also bundled with the
release, and then saved over the top of the existing sys.config. Once
the escript has finished executing, your app is booted using that
sys.config file, and everything carries on like normal.

NOTE: Your config/config.exs file is still converted to the
sys.config which is bundled with the release. If you wish to hide
settings from your end users, put them in there, and remove the
definitions for them from your schema file. The sys.config is merged
with the configuration which is defined in the .conf, so your settings
will still be applied, they just won’t be exposed for end users.

You can also change the directory of all your configuration files sys.config,
vm.args and <project>.conf using RELEASE_CONFIG_DIR or only for conform
config <project>.conf using RELEASE_CONFIG_FILE system environments like this:

RELEASE_CONFIG_DIR=/some_path_to_configs bin/<project> start

or

RELEASE_CONFIG_FILE=/some_path_to_configs/<project>.conf bin/<project> start

So you can have persistent configuration for your application.

The configs placed in $DEPLOY_DIR/releases/$RELEASE_VER will be used
as persistent default configs. They will be used by first release start and placed in
$DEPLOY_DIR/releases/$RELEASE_VER/running-config if no
RELEASE_MUTABLE_DIR defined. It is also possible to move the running-config, logs
and erl_pipes using RELEASE_MUTABLE_DIR system environment. The idea is to
hold persistent and non-persistent data separately.

NOTE: If not using conform, and relying on config.exs, you cannot use dynamic code which relies on the runtime environment, i.e:

config :myapp,
 foo: System.get_env("FOOBAR")

The reason for this is that the Erlang VM uses sys.config for configuration, and sys.config can only contain static terms, not function calls or other dynamic code. When your config.exs is evaluated and converted to sys.config, the dynamic code in config.exs is executed, evaluated, and the result is persisted in sys.config. If you are relying on such things as environment variables in config.exs, the value stored in sys.config will be the value of those variables when the build was produced, not their values when the release is booted, which is almost certainly not what you intended. When running your app with iex -S mix or mix run --no-halt, the way configuration is evaluated is different, as Mix will load the config from config.exs, and overwrite whatever is in the default configuration. As neither Mix, nor your config.exs is present in a release, this is not possible. If you need to load configuration from the environment at runtime, you will need to do something like the following:

my_setting = Application.get_env(:myapp, :setting) || System.get_env("MY_SETTING") || default_val

 © Copyright 2016.
 Created using Sphinx 1.3.5.

deployment.html

 Navigation

 		
 index

 		exrm stable documentation »

Deployment

How to deploy your release

A quick word of warning: It is currently not supported to perform hot upgrades/downgrades from the rel directory. This is because the upgrade/downgrade process deletes files from the release when it is installed, which will cause issues when you are attempting to build a release of the next version of your app. It is important that you do actual deployments of your app outside of the build directory if you plan on using this feature of releases!

First lets talk about how you can run your release after executing mix release. The following example code is based on the exrm-test project [https://github.com/bitwalker/exrm-test]:

> rel/test/bin/test console
Erlang/OTP 17 [erts-6.0] [source] [64-bit] [smp:4:4] [ds:4:4:10] [async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Interactive Elixir (1.0.5) - press Ctrl+C to exit (type h() ENTER for help)
iex(test@127.0.0.1)1> :gen_server.call(:test, :ping)
:v1
iex(test@127.0.0.1)2>

As you can see from the above example, running the console command allows you to boot your release with an iex console just like if you had run iex -S mix. This allows you to quickly test and play around with your running release build!

Deployment

Now that you’ve generated your first release, it’s time to deploy it! Let’s walk through a simulated deployment to the /tmp directory on your machine:

		mix release

		mkdir -p /tmp/test

		cp rel/test/releases/0.0.1/test.tar.gz /tmp/

		cd /tmp/test

		tar -xf /tmp/test.tar.gz

Now to start your app:

$ bin/test start

You can test if your app is alive and running with:

$ bin/test ping

If you want to connect a remote shell to your now running app:

$ bin/test remote_console

Ok, you should be staring at a standard iex prompt, but slightly different, something like:

iex(test@localhost)1>

The prompt shows us that we are currently connected to test@localhost, which is the value of name in our vm.args file. Feel free to ping the app using :gen_server.call(:test, :ping) to make sure it works (just to recap, this is based on the example app described above, your own application will not have this function available).

At this point, you can’t just abort from the prompt like usual and make the node shut down (which is what occurs when you are doing this from the console command). This would be an obviously bad thing in a production environment. Instead, you can execute :init.stop from the iex prompt, and this will shut down the node. You will still be connected to the shell, but once you quit the shell, the node is gone.

Executing code against a running release

If you want to execute a command against your running node without
attaching a shell you can do something like the following:

$ bin/test rpc erlang now

or

$ bin/test rpc calendar valid_date "{2014,3,14}."

Notice that the arguments required are in module, function, argument
format. The argument parameter will be evaluated as an Erlang term,
and applied to the module/function. Multiple args should be formatted as
a list, i.e. [arg1, arg2, arg3]..

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		exrm stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/minus.png

